If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-16t-1=0
a = 1; b = -16; c = -1;
Δ = b2-4ac
Δ = -162-4·1·(-1)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{65}}{2*1}=\frac{16-2\sqrt{65}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{65}}{2*1}=\frac{16+2\sqrt{65}}{2} $
| 3/3b+3/4=2/b-2/4 | | .5x-5+.4x=4 | | t^2-16t01=0 | | 7.9x-11.1=12.6 | | 5x-5+9=-11 | | x-0.19=524.48 | | 2-2r+4r=r+4-7 | | -40-(-23)=x/2= | | -40-(-23)=x/2 | | 1-3n=3n-n+7 | | F(x)=55x | | y-5/6y+2=10 | | 8.35x=4.25x+4.69 | | x-0.19x=524.48 | | x+5=22= | | 67=2+5(3-2n) | | 1.052x+2.458=7.582 | | {5n+3}=12 | | -4z=8= | | Y=-3+3/4x | | 15r–12r=12 | | a÷3+1=16 | | 12-p=5 | | 28=5(1+v)-(1-3v) | | 7×n=14 | | 4.6=1.2+w | | 4(5c-1)-5=18c+7= | | 17-p=7 | | 15x-1=13x+13 | | -6x-4(-7x-13)=50 | | 13=x/2+8 | | p/2+7.50=9.05 |